3.142 \(\int \frac{a+b \tanh ^{-1}(\frac{c}{x})}{x^4} \, dx\)

Optimal. Leaf size=57 \[ -\frac{a+b \tanh ^{-1}\left (\frac{c}{x}\right )}{3 x^3}-\frac{b \log \left (c^2-x^2\right )}{6 c^3}+\frac{b \log (x)}{3 c^3}-\frac{b}{6 c x^2} \]

[Out]

-b/(6*c*x^2) - (a + b*ArcTanh[c/x])/(3*x^3) + (b*Log[x])/(3*c^3) - (b*Log[c^2 - x^2])/(6*c^3)

________________________________________________________________________________________

Rubi [A]  time = 0.0407439, antiderivative size = 57, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {6097, 263, 266, 44} \[ -\frac{a+b \tanh ^{-1}\left (\frac{c}{x}\right )}{3 x^3}-\frac{b \log \left (c^2-x^2\right )}{6 c^3}+\frac{b \log (x)}{3 c^3}-\frac{b}{6 c x^2} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcTanh[c/x])/x^4,x]

[Out]

-b/(6*c*x^2) - (a + b*ArcTanh[c/x])/(3*x^3) + (b*Log[x])/(3*c^3) - (b*Log[c^2 - x^2])/(6*c^3)

Rule 6097

Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcTa
nh[c*x^n]))/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[(x^(n - 1)*(d*x)^(m + 1))/(1 - c^2*x^(2*n)), x], x
] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1]

Rule 263

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(m + n*p)*(b + a/x^n)^p, x] /; FreeQ[{a, b, m
, n}, x] && IntegerQ[p] && NegQ[n]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{a+b \tanh ^{-1}\left (\frac{c}{x}\right )}{x^4} \, dx &=-\frac{a+b \tanh ^{-1}\left (\frac{c}{x}\right )}{3 x^3}-\frac{1}{3} (b c) \int \frac{1}{\left (1-\frac{c^2}{x^2}\right ) x^5} \, dx\\ &=-\frac{a+b \tanh ^{-1}\left (\frac{c}{x}\right )}{3 x^3}-\frac{1}{3} (b c) \int \frac{1}{x^3 \left (-c^2+x^2\right )} \, dx\\ &=-\frac{a+b \tanh ^{-1}\left (\frac{c}{x}\right )}{3 x^3}-\frac{1}{6} (b c) \operatorname{Subst}\left (\int \frac{1}{x^2 \left (-c^2+x\right )} \, dx,x,x^2\right )\\ &=-\frac{a+b \tanh ^{-1}\left (\frac{c}{x}\right )}{3 x^3}-\frac{1}{6} (b c) \operatorname{Subst}\left (\int \left (-\frac{1}{c^4 \left (c^2-x\right )}-\frac{1}{c^2 x^2}-\frac{1}{c^4 x}\right ) \, dx,x,x^2\right )\\ &=-\frac{b}{6 c x^2}-\frac{a+b \tanh ^{-1}\left (\frac{c}{x}\right )}{3 x^3}+\frac{b \log (x)}{3 c^3}-\frac{b \log \left (c^2-x^2\right )}{6 c^3}\\ \end{align*}

Mathematica [A]  time = 0.0093336, size = 62, normalized size = 1.09 \[ -\frac{a}{3 x^3}-\frac{b \log \left (x^2-c^2\right )}{6 c^3}+\frac{b \log (x)}{3 c^3}-\frac{b}{6 c x^2}-\frac{b \tanh ^{-1}\left (\frac{c}{x}\right )}{3 x^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcTanh[c/x])/x^4,x]

[Out]

-a/(3*x^3) - b/(6*c*x^2) - (b*ArcTanh[c/x])/(3*x^3) + (b*Log[x])/(3*c^3) - (b*Log[-c^2 + x^2])/(6*c^3)

________________________________________________________________________________________

Maple [A]  time = 0.007, size = 57, normalized size = 1. \begin{align*} -{\frac{a}{3\,{x}^{3}}}-{\frac{b}{3\,{x}^{3}}{\it Artanh} \left ({\frac{c}{x}} \right ) }-{\frac{b}{6\,c{x}^{2}}}-{\frac{b}{6\,{c}^{3}}\ln \left ({\frac{c}{x}}-1 \right ) }-{\frac{b}{6\,{c}^{3}}\ln \left ( 1+{\frac{c}{x}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arctanh(c/x))/x^4,x)

[Out]

-1/3*a/x^3-1/3*b/x^3*arctanh(c/x)-1/6*b/c/x^2-1/6/c^3*b*ln(c/x-1)-1/6/c^3*b*ln(1+c/x)

________________________________________________________________________________________

Maxima [A]  time = 0.96182, size = 74, normalized size = 1.3 \begin{align*} -\frac{1}{6} \,{\left (c{\left (\frac{\log \left (-c^{2} + x^{2}\right )}{c^{4}} - \frac{\log \left (x^{2}\right )}{c^{4}} + \frac{1}{c^{2} x^{2}}\right )} + \frac{2 \, \operatorname{artanh}\left (\frac{c}{x}\right )}{x^{3}}\right )} b - \frac{a}{3 \, x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c/x))/x^4,x, algorithm="maxima")

[Out]

-1/6*(c*(log(-c^2 + x^2)/c^4 - log(x^2)/c^4 + 1/(c^2*x^2)) + 2*arctanh(c/x)/x^3)*b - 1/3*a/x^3

________________________________________________________________________________________

Fricas [A]  time = 1.67192, size = 144, normalized size = 2.53 \begin{align*} -\frac{b x^{3} \log \left (-c^{2} + x^{2}\right ) - 2 \, b x^{3} \log \left (x\right ) + b c^{3} \log \left (-\frac{c + x}{c - x}\right ) + 2 \, a c^{3} + b c^{2} x}{6 \, c^{3} x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c/x))/x^4,x, algorithm="fricas")

[Out]

-1/6*(b*x^3*log(-c^2 + x^2) - 2*b*x^3*log(x) + b*c^3*log(-(c + x)/(c - x)) + 2*a*c^3 + b*c^2*x)/(c^3*x^3)

________________________________________________________________________________________

Sympy [A]  time = 3.6407, size = 68, normalized size = 1.19 \begin{align*} \begin{cases} - \frac{a}{3 x^{3}} - \frac{b \operatorname{atanh}{\left (\frac{c}{x} \right )}}{3 x^{3}} - \frac{b}{6 c x^{2}} + \frac{b \log{\left (x \right )}}{3 c^{3}} - \frac{b \log{\left (- c + x \right )}}{3 c^{3}} - \frac{b \operatorname{atanh}{\left (\frac{c}{x} \right )}}{3 c^{3}} & \text{for}\: c \neq 0 \\- \frac{a}{3 x^{3}} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*atanh(c/x))/x**4,x)

[Out]

Piecewise((-a/(3*x**3) - b*atanh(c/x)/(3*x**3) - b/(6*c*x**2) + b*log(x)/(3*c**3) - b*log(-c + x)/(3*c**3) - b
*atanh(c/x)/(3*c**3), Ne(c, 0)), (-a/(3*x**3), True))

________________________________________________________________________________________

Giac [A]  time = 1.12926, size = 85, normalized size = 1.49 \begin{align*} -\frac{b \log \left (-c^{2} + x^{2}\right )}{6 \, c^{3}} + \frac{b \log \left (x\right )}{3 \, c^{3}} - \frac{b \log \left (-\frac{c + x}{c - x}\right )}{6 \, x^{3}} - \frac{2 \, a c^{2} + b c x}{6 \, c^{2} x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c/x))/x^4,x, algorithm="giac")

[Out]

-1/6*b*log(-c^2 + x^2)/c^3 + 1/3*b*log(x)/c^3 - 1/6*b*log(-(c + x)/(c - x))/x^3 - 1/6*(2*a*c^2 + b*c*x)/(c^2*x
^3)